Effects of Obstacle Size and Placement in 3-D Gravity-Driven Granular Flow

Presenter
Jackson Paul Diodati
Campus
UMass Amherst
Sponsor
Shubha Tewari, Department of Physics, UMass Amherst
Schedule
Session 4, 2:30 PM - 3:15 PM [Schedule by Time][Poster Grid for Time/Location]
Location
Poster Board A85, Campus Center Auditorium, Row 5 (A81-A100) [Poster Location Map]
Abstract

Using the open-source software LAMMPS (lammps.org), we simulate the effects of a stationary obstacle on the clogging probability of granular particles as they flow out of a 3D hopper.  Hopper clogging is a problem of great relevance to many industries that process powders.  The hopper is a cylinder with a conical base into which we place a spherical obstacle and pour spherical grains.  The opening at the base has a diameter small enough for the hopper to clog intermittently.  When particles flow out of the hopper, they are reintroduced at the top to ensure a continuous flow.  Each time the hopper clogs, particles at the bottom of the hopper are deleted and new particles reintroduced at the top.  We find that the number of particles that leave the hopper and the time between clogging events are affected by the size and position of the obstacle.  Our results indicate that, as long as the obstacle is not too close to the opening, the flow rate is not too sensitive to the presence of obstacles. The optimal placement of the obstacle to reduce clogs depends on its size, and the optimal size appears to depend on the size of the opening. Our simulation results are consistent with new experiments involving obstacles in 3D silos.

Keywords
Granular Flow, Simulation, Jamming
Research Area
Physics and Nanotechnology

SIMILAR ABSTRACTS (BY KEYWORD)

Research Area Presenter Title Keywords
Physics and Nanotechnology Keiser, Shane Alexander Simulation
Engineering Durkee, Jessica Ann Jamming
Physics and Nanotechnology Barrett, Luc A. simulation
Computer Science Rojanapairat, Inthorn Arick gaming